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Interfacial Behavior in Type IV Systems1

A. Mejı́a2,3 and H. Segura2

Type IV mixtures exhibit two heteroazeotropic lines, one at low tempera-
ture and the other meeting the supercritical range, characterized by the prox-
imity of their critical end points (CEPs). Between these CEPs, the liquid
phase is homogeneous inside a narrow range of temperature. The aim of this
work is to analyze interface properties and wetting transitions for Type IV
mixtures. Interfacial tensions have been calculated by means of the gradient
theory, applied to binary van der Waals fluids. This approach is able to pre-
dict interfacial tension and phase equilibrium using a common equation of
state (EOS). Results show that interfacial properties and wetting conditions
are governed by the densities and the number of phases involved in equilib-
rium, a scenario that changes as temperature evolves from the low- to the
high-temperature heteroazeotropic line.

KEY WORDS: interface properties; square gradient theory; Type IV behav-
ior; wetting transitions.

1. INTRODUCTION

Coexisting bulk fluid phases in thermodynamic equilibrium are connected
by an interfacial fluid, whose concentration ρ, varies spatially between its
bulk fluid phases. Fig. 1. shows, schematically, the typical pattern of ρ as
a function of a spatial coordinate z, for a liquid in equilibrium with its
vapor. For mixtures, the interfacial fluid may be enclosed by gas/liquid,
liquid/liquid, or gas/liquid/liquid bulk fluids, and its ρ(z) behavior is a
function of pure fluids and their bulk densities. In fact, ρ(z) may be or
not be a monotonic function, as illustrated in Fig. 2.
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Fig. 1. Schematic representation of ρ–z projec-
tion for a planar vapor/liquid interface of a pure
fluid at the boiling point. (•) VLE bulk densities.

Fig. 2. Typical ρi–z projections for mixtures. (—) GL1E, (– – –)
GL1E with adsorption of species on the interfacial zone, (–·–)
L1L2E, (–· · ·–) GL1L2E, (•) liquid bulk density, (◦) vapor bulk
density.

From a practical viewpoint, these kinds of interfaces are present in
many chemical and environmental processes. For example, interface fluids
are present in heat transfer under boiling conditions, generation of tro-
pospheric ozone, liquid extraction processes, production of herbicides and
pesticides, processes of enhanced oil recovery, fluids wetting, etc. There-
fore, the analysis of interface fluid properties, such as interfacial tension
and wetting transitions, are the precise piece to understand and design
these industrial processes.
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In this context, one of the most successful approaches is the square
gradient theory of van der Waals [1]. Briefly, the gradient theory (GT)
describes a continuous evolution of the density of the Helmholtz energy
of an inhomogeneous fluid along the interface, from which the interfa-
cial concentration profile and interface tension can be calculated. It should
be noted that the main advantages of the GT approach are the facts
that the interfacial behavior is described in the same terms as thermody-
namic equilibrium variables, like temperature, pressure, and mole fraction,
and that the same equation of state (EOS) model can be used to predict
both the interfacial behavior and the phase equilibrium conditions. As fol-
lows from Rowlinson and Widom [1], the topology of an interface fluid is
governed by the type of fluids and their phase equilibria; therefore, mix-
tures with several phase equilibrium patterns are adequate candidates to
obtain a global understanding of interfacial behavior. Following the van
Konynenburg and Scott work [2], Type IV mixtures are an interesting
choice due to the fact these mixtures exhibit two heteroazeotropic lines
(one at low and the other at high temperature) which are characterized by
their critical end points (CEPs).

The main scope of this work is to analyze interface properties and
wetting transitions for this kind of mixtures in a planar interface. Our pre-
dictions are based on GT applied to the van der Waals EOS (vdW-EOS)
with a quadratic mixing rule (QMR). The results will be illustrated consid-
ering the behavior of the spatial variation of the fluid concentrations along
the interface width and the dependence of the interfacial tension on equi-
librium conditions.

2. THEORY

2.1. Square Gradient Theory for Planar Interfaces

GT was originally developed by van der Waals in 1894 and reformu-
lated later by Cahn and Hilliard [3]. In this approach, the interfacial ten-
sion between two bulk phases (α,β) is related to the interface width by the
following equation [1]:

σ =2

∞∫
−∞

(
�+P 0

)
dz=2

∞∫
−∞

��dz (1)

where σ is the interfacial tension, P 0 is the bulk equilibrium pressure,
and z is a coordinate normal to the interface. The integral limits describe
the boundary conditions of bulk fluid phases, i.e., ρi(z = −∞) = ρα

i and
ρi(z = +∞) = ρ

β
i where ρ

α,β
i corresponds to the molar concentration of
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component i in the α and β bulk phases, respectively. Finally, � is the
grand thermodynamic potential, which is defined as

� [ρi, ρ]=a0 [ρi, ρ]−
nc∑

i=1

ρiµ
0
i

[
T 0, V 0, ρ0

i

]
(2)

In Eq. (2) ρ is the concentration of the mixture which is related to
the concentration of species i; ρi , and the mole fraction xi by ρi = xiρ.
nc stands for the number of components. V 0, T 0, ρ0

i are the equilibrium
volume, temperature, and concentration of component i, respectively. a0
is the density of the Helmholtz energy of the homogeneous system (a0 =
A/V ) and µ0

i is the chemical potential of component i at equilibrium.
Both a0 and µ0

i can be determined directly from any EOS. In Appendix A,
we summarize these expressions for the vdW-EOS with QMR. An impor-
tant feature of the � function, as stated by Rowlinson and Widom [1], is
that the ��–ρ projection can be used to establish if the phase equilibria
exhibit stable phases (absolute minima) or metastable phases (relative min-
ima). An example of absolute and relative minima at ��–ρ projection can
be observed in Fig. 3.

Replacing Eq. (2) in Eq. (1) reveals that the integration processes
need an additional relation between ρi and z. Following the GT, this
relation is given by the following set of partial differential equations
(PDE) [4]:

nc∑
j=1

cij

d2ρj

dz2
− 1

2

nc∑
k,j=1

∂ckj

∂ρi

dρk

dz

dρj

dz
= ∂�

∂ρi

(i =1,2, . . . , nc) (3)

where ρi

∣∣
z=−∞ = ρα

i and ρi

∣∣
z=∞ = ρ

β
i ; cij is the cross influence parame-

ter (cij = cji). Theoretically, cij is related to the mean square range of the
direct correlation function of an homogeneous fluid. cij is given by [5]

cij (ρ, T )= κT N2
av

6

∫
V

s2c
ij

0 (s;ρ) d3s (4)

In this expression κ is Boltzmann’s constant, Nav is Avogadro’s num-
ber, s is a characteristic coordinate between species i and j , and c

ij

0 (s;ρ)
is the two-body direct correlation function between species i and j in
homogeneous fluids. However, since c

ij

0 (s;ρ) is intractable, some approxi-
mation has been applied [4]. One of the most successful approximations is
c
ij

0 (s;ρ) ≈c
ij

0 (s) [6], which automatically transforms the PDEs to a set of
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Fig. 3. Usual ��–ρ projections at fluid phase equilibria. (—)
αβE, (–·–) αβE with an embryo phase, γ , (–··–) αβγE, (•) abso-
lute minima (stable phase bulk densities), (◦) relative minima
(metastable phases).

ordinary differential equations (ODEs). Based on cij

0 ’s approximation, cij

for pure fluids (cij = cii) is given by [6]

cii(T )=−N2
av

6

∫
V

s2u(s)g(s)d3s (5)

where u is the intermolecular potential and g is the radial distribution
function. For the fluids studied here (vdW fluids), the Sutherland poten-
tial is used for u, and g is taken as a step function. u and g are given by

uii (s)=−εii

(σii

s

)6
, gii(s)=

{
0 if s <σii

1 if s �σii
(6)

εii and σii represent length and energy parameters characteristic of molec-
ular interactions of specie i. Replacing Eq. (6) in Eq. (5) and integrating
over V , cii takes the form,

cii = 2
3
N2

avπεiiσ
5
ii (7)
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Following Carey’s work, Eq. (7) can be conveniently rewritten in terms of
the cohesion parameter (aii) and the covolume (bii) as

cii

aiib
2/3
ii

=
(

3
2πNav

)2/3

(8)

For the vdW-EOS (see Appendix A), aii and bii are given by [7]

aii = 27
64

(
RTc,i

)2

Pc,i
= 2

3
N2

avπεiiσ
3
ii , bii = 1

8
RTc,i

Pc,i
= 2

3
Navπσ 3

ii (9)

where R is the gas constant, and Pc,i and Tc,i are the critical pressure and
the critical temperature for component i, respectively.

For the case of mixtures, cij can be obtained by averaging the pure-
component influence parameters according to the following geometric
combining rule [4]:

cij = (
1−χij

)√
ciicjj (10)

where χij is a symmetric adjustable parameter (χij =χji) obtained by fit-
ting experimental data of σ for mixtures. However, as some authors have
shown [4,8], the use of χij =0 is a good choice for several fluid/fluid inter-
faces. In the approximation presented here, all interfacial calculations were
performed using χij = 0. The advantage of χij = 0 is that GT acquires a
predictive character without a loss of generality [9,10], cij can be predicted
from pure fluid information, and the ODEs simplify to the following sys-
tem of algebraic equations (AEs) [4]:

√
css

[
µk (ρ)−µ0

k

]
=√

ckk

[
µs (ρ)−µ0

s

]
k =1,2, . . . , s −1, s +1, . . . , nc

(11)

These AEs can be solved by setting a value of ρs(z) and calculating the ρk

values. Once ρk(ρs) have been determined, the ρk(z) projections are calcu-
lated from the ODEs, which after some algebra yields [4,8]

z(ρn)− z0(ρ
0
n)=

ρn∫

ρ0
n

√√√√ 1
2��

nc∑
i,j=1

cij

(
dρi

dρn

)(
dρj

dρn

)
(dρn) n=1,2, . . . , nc

(12)

where z0 is a reference of z coordinate, where ρ = ρ0
n. Some patterns of

ρn(z) projections were shown for pure fluids and mixtures in Figs. 1 and
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2, respectively. Eq. (12) also provides the possibility to express σ in terms
of ρ rather than z. Replacing it in Eq. (1), σ(ρ) is given by

σ =
ρ

β
s∫

ρα
s

√√√√2��

nc∑
i,j=1

cij

(
dρi

dρs

)(
dρj

dρs

)
dρs (13)

The latter transformation is useful to understand the σ behavior near to
critical states, and the wetting transition of interface fluids, as we will
describe in the following section.

2.2. Numerical Procedure for Calculating Interfacial Properties

In order to calculate the interfacial behavior we have used the follow-
ing procedure:

• Specify the critical temperature (Tc,i) and the critical pressure (Pc,i)
for pure species i, and the interaction parameter (kij ) of the mix-
ture.

• At a given temperature T 0 and liquid phase mole fraction (xi),
perform the bubble-point calculation to predict the equilibrium
pressure (P 0), the vapor-phase mole fractions (yi) and the concen-
trations of the bulk phases (ρ0,L, ρ0,G). In this case, the vdW-EOS
is used for predicting the equilibrium state and the φ–φ approach
is considered for performing GLE calculations [7].

• Evaluate cii from Eq. (8) and cij from Eq. (10) with χij =0.

• Select the independent variable ρs , provided that ρs must exhibit
a monotonic behavior along the interface region. In this work, we
selected ρs =ρ2.

• Discretisize ρ2 (ρ2 = ρs) between the concentration of bulk phases
(ρ0,L

2 ρ
0,V
2 ). A discretization grid of 10,000 points has been consid-

ered in this work.

• Solve Eq. (11) for the concentration ρi �= s for each ρs value along
the discretization grid. The Newton–Raphson method is used to
solve Eq. (11) [11]. The derivatives involved in this numerical
method can be calculated from(

dρi

dρs

)
=

√
ciiµss −√

cssµis√
ciiµsi −√

cssµii

, µis =
(

∂µi

∂ρs

)
ρi ,T,V

(14)

• Calculate � from Eq. (2) and �� as ��=�+P 0.
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• Evaluate z(ρn) for n= 1,2 from Eq. (12). The derivatives required
in Eq. (12) have been calculated from Eq. (14) and the integration
is performed considering an adaptive Gaussian Quadrature [11].

• Calculate σ from Eq. (13). The numerical integration procedure
that allows calculation of σ is similar to the methods considered for
integrating z(ρn).

The previous procedure is summarized in Fig. 4.

2.3. Interfacial Tensions near Critical States

It is well known that when two phases (α,β) are approaching their
critical state, the corresponding bulk phase densities become identical
(ρα ≈ρβ ); therefore, Eq. (13) produces σ →0. For the case of three phases
(α,β, γ ), with ρα �=ρβ �=ργ along αβγE, interfacial tensions are different
(σαβ �=σαγ �=σβγ ), but near to a CEP, ρα �=ρβ ≈ργ which is conducive to
σαβ ≈σαγ and σβγ →0.

2.4. Wetting Transitions at Fluid Interfaces

Considering Fig. 3 and following the structure of Eq. (13), we can
conclude that the area below two bulk phases is proportional to σ , and, in
general, when π different phases are in equilibrium, [1/2(π −1)π ] indepen-
dent σ s can be formed and are interrelated via their contact angles [1]. For
the cases studied here, two (α,β) and three (α, β, γ ) phases are in equi-
librium; consequently, we have one (σαβ ) or three (σαβ, σαγ , σβγ ) different
interfacial tensions, respectively. In the later case, σ s are interrelated by [1]

σαβ <σαγ +σβγ Neumman inequality (15a)

σαβ =σαγ +σβγ Antonow rule (15b)

and cyclic permutation of α,β, and γ . The situation described by Eq.
(15a) is called partial wetting of the γ phase in αβ interface. Equation
(15b) denotes the total wetting of the γ phase in the αβ interface, and
the transition from partial to total wetting (or vice versa) is called the wet-
ting transition [1], which can occur at a certain point along the three-phase
equilibrium (αβγE) line. The evolution of σαβ along to αβγ E is schemat-
ically illustrated in Fig. 5.

3. RESULTS AND DISCUSSION

Based on the global phase equilibria for the vdW-EOS [2], we select a
typical Type IV mixture. Table I summarizes the critical properties of pure
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Fig. 4. Block diagram for algorithm calculations. T 0 is the isothermal condition to phase
and interface calculations; Tc,i , Pc,i are the critical temperature and the critical pressure for
component i. kij is the interaction parameter. xi is the liquid mole fraction of component i

at phase equilibrium. P 0 is the bulk equilibrium pressure. ρ
0,L
i , ρ

0,V
i are the bulk equilibrium

concentrations of component i in liquid and vapor phases, respectively. cij are the influence
parameters. ρi is the concentration of component i in the interface region. � is the grand
thermodynamic potential. z is a coordinate normal to the interface. σ is the interfacial ten-
sion.

components and the interaction parameter for this mixture. Figure 6 illus-
trates its traditional pressure–temperature diagram, which exhibits three
stable critical lines and two heteroazeotropic lines. The low temperature
heteroazetropic line [LLG]1 meets an upper critical end point [UCEP]1,
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Fig. 5. Schematic representation of wetting transition
along three-phase equilibria. α,β, γ phases. (– ·–)
Three phase equilibria (αβγE), (�) CEP, (�) wp
(wetting point).

Table I. Critical Properties of Pure Components and
Interaction Parameter

Tc2/Tc1 Pc2/Pc1 k12

3.9692 6.1429 −0.3655

where the immiscible liquid phases of the heterazotrope become critical.
At higher temperature, an additional heteroazeotropic line [LLG]2 starts
at a lower critical end point [LCEP]2, where the liquid phase becomes
immiscible again and, then, it ends at higher temperatures at [UCEP]2,
where one of the immiscible liquid phases and the gas phase of the hetero-
azeotrope become critical. Specific details related to Type IV and its con-
struction can be found in Refs. [2,12]. In order to describe the interfacial
behavior related to Fig. 6, we need to consider the topological evolution
of interfacial projections (i.e., ��–ρ,ρi,−z and σ–P,xi) in the subcriti-
cal phase equilibria related to this type. Using the temperature as a vari-
able, we are able to collect all subcritical equilibria in four zones. Table II
summarizes these zones, their temperature ranges, and the isothermal con-
ditions which will be used to analyze the interfacial behavior.
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Fig. 6. Pressure – temperature diagram for Type IV mixtures. (—-) Critical line, (· · ·)
vapor pressure, (– ·–) GLLE, (◦) pure component, (�) CEP.

Table II. Classification of Subcritical Phase Equilibria, and Isothermal Conditions for the
Interfacial analysis

Zone Temperature Range (T/Tc1) Equilibria Type Selected Temperature (T/Tc1)

1 0–0.7966 (TUCEP1) GL1, GL2, L1L2 0.78
2 0.7966–0.8457 (TLCEP2) GL 0.82
3 0.8457–1.0549 (TUCEP2) GL1, GL2, L1L2 0.95
4 1.0549–3.9692 (Tc2) GL 1.10

In the following section we describe the interfacial topology in terms
of the interfacial projections over the complete mole fraction range. We
divide our analysis into two sections; one is related to the variation of the
interfacial projections for each zone of a Type IV mixture (see Table II)
and the other considers wetting transitions along the two heteroazeotrop-
ic lines.

3.1. Evolution of Interface Properties with Temperature

Figure 7 depicts the behavior of the ��–ρ profile at the four zones
for the complete mole fraction range. From these figures, we can observe
that each isothermal projection displays only two absolute minima for a
fixed mole fraction. This fact confirms that two bulk fluid phases (GL or
LL) are present at the temperature for which the fluid/fluid equilibria have
been calculated, as we can expect from the theory and Table II. Addition-
ally, Fig. 7 also shows some relative minima near to CEPs which are due
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Fig. 7. ��–ρ projections at several isothermal conditions. (—) x1 = 0.25, (– ·–) x1 = 0.50,
(– · ·–) x1 =0.75, (•) VLE bulk densities.

to the fact that an embryo phase (γ ) is present. As is expected, the posi-
tion and magnitude of γ changes as T or x1 changes. For example, for an
isothermal condition, γ changes from an embryo state to an equilibrium
state (see Fig. 7(a) and (c)) as x1 increases. At a fixed x1, the density of γ

may change from liquid-like to gas-like densities as T increases. In addi-
tion, from the theoretical arguments, we can anticipate, from ��–ρ dia-
grams, that σGL is not always greater than σLL. The σ value depends on
the thermomechanical conditions at which the equilibrium is calculated.

Figure 8 illustrates the concentration of species along the interface
length. These ρi–z projections were calculated at the same thermodynamic
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conditions as Fig. 7. Inspection of these diagrams reveals that the more
volatile component (1) always shows a stationary point (SP), when its con-
centration is larger than the bulk concentration. This fact reflects that
component (1) is positively adsorbed at the interface. Moreover, the less
volatile component (2) is not adsorbed. From these figures we can observe
that the position and magnitude of SPs change as T or x1 changes.
In fact, we can conclude that both the position and magnitude of SPs
increase as x1 increases. For a fixed x1, the position of SP increases and
the magnitude decreases as T increases. Figure 8 also shows that LL
interfaces exhibit smoother profiles and larger interface widths than GL

Fig. 8. ρi–z projections at several isothermal conditions. (– ·–) ρ1, (– · ·–) ρ2, (•) VLE
bulk densities, (◦) stationary points (sps).
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interfaces. This behavior is caused, mainly, by the bulk concentration gra-
dient in LLE and in GLE. Finally, when previous patterns are com-
pared with computer simulations [13], we can conclude that ρi–z from GT,
shows good qualitative agreement to simulations for LL and GL inter-
faces.

Figure 9 shows the σ–P projections at the same isothermal conditions
considered in Figs. 7 and 8. As expected from Table II, one or three inter-
facial tensions (σGL or σGL1, σL1L2, σGL2) are present in these σ(P ) dia-
grams. A quick inspection of each isothermal σ–P diagram reveals that,

Fig. 9. σ–P diagrams at several isothermal conditions. (· · ·) L1L2GE, (•) three-phase
line, (◦) pure component, (�) cp (critical point).
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Fig. 9. Continued.

in general, σ decreases as the phase equilibrium tends to the critical point,
as expected from Eq. (13). However, a close inspection shows that σ may
increase in regions where the γ phase is present. The σ(P ) behavior can
be summarized as follows: σ is not a continuous function in zones 1
and 3, its discontinuity is due to the fact that three equilibria conditions
are present into these zones (see Table II). In particular, zone 1 shows
that σGL1, σGL2 > σL1L2. Zone 3 shows two regimes as the temperature
increases; from TLCEP2/Tc1 to T/Tc1 = 1, σ(P ) is similar to zone 1, and
from T/Tc1 =1 to TUCEP2/Tc1, σGL1 >σL1L2 >σGL2. For zones 2 and 4, σ

is a continuous function of P ; however, its trend is affected by the pres-
ence of the γ phase. In order to complete the σ descriptions in zones 1–4,
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Fig. 10 shows the evolution of the interfacial tension on mole fraction
σ(x1). From these figures we can observe similar patterns discussed previ-
ously. Regrettably, no experimental information is available to contrast our
σ(P, x) predictions. However, we can observe that our description reflects
the facts in their phase diagrams, and follows the same patterns observed
by other authors [8].

3.2. Wetting Transitions along to Three-Phase Equilibria

Figure 11 shows σ–T projections along the two three-phase equilibria
for the Type IV mixture, and Table III summarizes its behavior as temper-
ature increases. From Table III, we can establish that at a CEP three-phase

Fig. 10. σ–x1 diagrams at several isothermal conditions. (•) Three-phase line, (◦) pure
component, (�) cp (critical point).



Interfacial Behavior in Type IV Systems 1411

Fig. 10. Continued.

equilibria converge, simultaneously, to one subcritical equilibria and one
critical equilibria. These interfacial tension results agree with the phase
description from van Konynenburg and Scott. In addition, from these fig-
ures and Eqs. (15), we can conclude that along the [GLL]1 line, wetting
transitions never occur. But along [GLL]2, σGL2 =σGL1 +σL2L1 at T/Tc1 =
Tw/Tc1 = 0.9153, and therefore, the [GLL]2 line exhibits a wetting transi-
tion. Physically, this transition means that for the GL2 interface, a layer
of a second liquid phase (L1) intrudes between G and L2 phases. In com-
plement, it is important to state that ρi(z) and ��(ρ) show the expected
behavior of a three-phase equilibrium (see Figs. 2 and 3). These behaviors
reinforce the phase and interface patterns previously described.
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Fig. 11. σ–T diagrams along [GLL]1 and [GLL]2.

Table III. Interfacial Tension Behavior along Three-Phase Equilibria for Type IV Mixture

Temperature range Phase equilibria type Interfacial tension behavior

[GLL]1line
Subcritical equilibria

T <TUCEP1 GL1, L1L2 σ decreases as T increases
GL2 σ increases as T increases

Subcritical equilibria
T =TUCEP1 GL1= GL2 σGL1= σGL2 �=0

Critical equilibria

L1L2 σL1L2 =0
[GLL]2line
Subcritical equilibria

T =TLCEP2 GL1 = GL2 σGL1 =σGL2 �=0

Critical equilibria
L1L2 σL1L2 =0

Subcritical equilibria
TLCEP2 <T <TUCEP2 GL1, GL2, L1L2 σGL1 first decreases and then increases,

σL1L2 decreases and σGL2 increases as
T increases

Subcritical equilibria
T =TUCEP2 GL1= L1L2 σGL1 =σL1L2 �=0

Critical equilibria
GL2E σGL2 =0
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4. CONCLUDING REMARKS

In this work we analyze interfacial properties and wetting transitions
for Type IV mixtures using the GT and the vdW-EOS with QMR. The
advantage of this approach is that a common EOS can be used to predict
phase equilibrium as well as interfacial properties. This advantage brings
the possibility to explain the phase equilibria and its stability from the
interfacial behavior. According to results, interfacial properties and wet-
ting conditions are governed by the densities and the number of phases
involved in equilibrium, a scenario that changes as temperature evolves
from the low- to the high-temperature heteroazeotropic line.
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APPENDIX A: Density of the Helmholtz energy of the homogeneous sys-
tem (a0) and chemical potential of component i (µ0

i ) from van der Waals
equation of state.

The van der Waals equation of state (vdw-EOS) is given, in terms to
P(T ,ρ), by

P = RTρ

1−ρb
−aρ2 (A.1)

where P is the absolute pressure, T is the absolute temperature, R is the
gas constant, ρ is the concentration of the mixture, a is the cohesion
parameter of the mixture, and b is the covolume of the mixture. Using the
QMR, a and b are given by

ρ2a =
nc∑

i,j=1

(
1−kij

)
ρiρj

√
aiiajj , ρb=

nc∑
i=1

ρibii (A.2)

where nc stands for the number of components, ρi is the concentration of
species i, aii , and bii are the cohesion parameter, and covolume of species
i, respectively (see Eq. (9)). kij is the interaction parameter.

a0 and µ0
i can be calculated by used the following relations [7,14]:

a0

ρRT
=

ρ∫
0

(
P

RTρ2
− 1

ρ

)
dρ + 1

ρ

nc∑
i=1

ρi ln ρi, µ0
i =

(
∂a0

∂ρi

)
T,ρj

(A.3)
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For the case of the vdW-EOS applied to a multicomponent fluid, Eq. (A.3)
can be expressed as

a0 =−aρ2 −RTρ ln (1−bρ)−RT

nc∑
i=1

ρi ln
(

Pref

RTρi

)
(A.4)

µ0
i =−RT ln (1−bρ)+ biRTρ

(1−bρ)
−2

nc∑
j=1

aijρj −RT ln
(

Pref

RTρi

)
+RT

(A.5)

where P ref is some freely chosen reference pressure.
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